Development and Validation of Machine Learning Algorithms to Evaluate Overall Walking Patterns of Lower Limb Prosthetic Users using Inertial Sensors.

Kuepper E.^{1,2}, Ng G.^{1,3}, Andrysek J.^{1,3}

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital Integrated Biomedical Engineering and Health Sciences, McMaster University 3. Institute of Biomedical Engineering, University of Toronto

Objective: Validate a machine learning (ML) algorithm to **assess** changes in walking patterns corresponding to clinically relevant gait parameters for lower limb prosthetic users (LLPUs).

Methods

Combining Simple Wearable Technology With Machine Learning to Assess Walking Patterns in Lower Limb Prosthetic Users.

Effect Size – Standardized Response Mean (SRM)									
Low Moderate High responsiveness									
Sensor Location	Pelvis			Upper leg			Lower leg		
Symmetry Change	3%	6%	9%	3%	6%	9%	3%	6%	9%
DTW	<mark>0.05</mark>	0.15	0.41	0.33	<mark>0.66</mark>	<mark>0.61</mark>	0.45	1.76	1.46
SOM	0.24	0.04	0.02	0.18	0.05	0.07	0.3	0.82	1.04
HMM	0.62	0.78	0.85	0.69	0.87	1.82	0.77	0.58	<mark>0.63</mark>

Conclusions

✓ ML algorithms trained on inertial sensor data can be responsive to changes in stance time symmetry.

Next steps:

□ Assess responsiveness of algorithms to changes in other gait parameters (ex. step length).

Wearable systems can offer cost-effective, portable, and user-friendly gait monitoring. When integrated with reliable gait evaluation models, these systems could:

HMM \rightarrow moderate-high responsiveness for all sensor locations and gait symmetry levels. Lower leg sensor location → highest responsiveness across all algorithms.

Impact

1. Provide **real-time feedback** without a clinician present. Monitor changes in and out of the clinic to **inform** clinical decision making and rehabilitation goals.

