
Can wearable technologies be used for out-ofclinic gait training to improve gait symmetry?



<sup>1</sup> Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital <sup>2</sup> Institute of Biomedical Engineering, University of Toronto



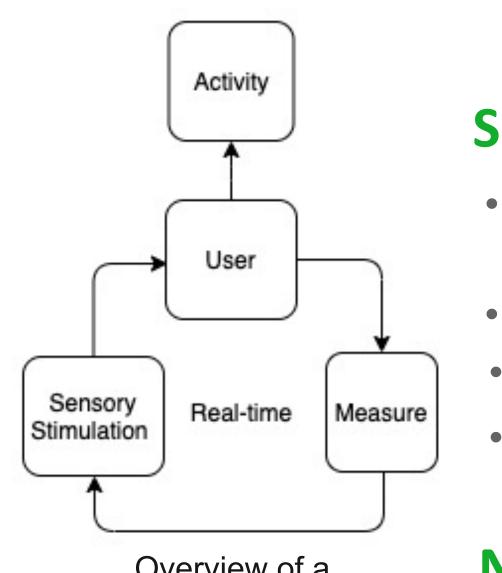
\*This research study was approved by the Research Ethics Board at the Holland Bloorview Kids Rehabilitation Hospital, Canada. (REB-0102).



**Holland Bloorview Kids Rehabilitation Hospital** 

# Wearable Biofeedback System for **Lower-limb Amputee Gait Training**

### Aliaa Gouda<sup>1,2</sup>, Jan Andrysek<sup>1,2</sup>


### Introduction

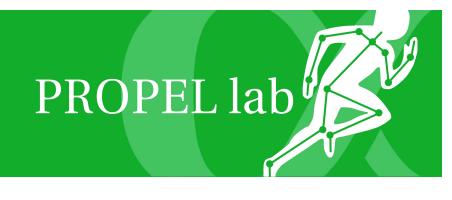
Biofeedback (BFB) provides users with real-time feedback that can elicit changes in gait patterns. Two major gaps:

- 1. Integrating rhythmic stimulation (proven to improve gait symmetry and maintain speed) [1]
- 2. Validating wearable BFB systems in free-walking environments for gait training

### **Objectives**

- Develop and validate a wearable BFB system using rhythmic stimulation
- (evaluate overall gait changes during training targeting stance-time symmetry)
- Develop and validate an activity recognition algorithm to apply during BFB gait training




Overview of a biofeedback system

### Methods

• Validate performance of wearable BFB system (developed

- mobile-app) targeting *stance-time symmetry* ratio
- Variable rhythmic stimulation incremental
- Participants: able-bodied (n=10) and lower-limb prosthesis users (n=10)

## Blcorview **RESEARCH INSTITUTE**



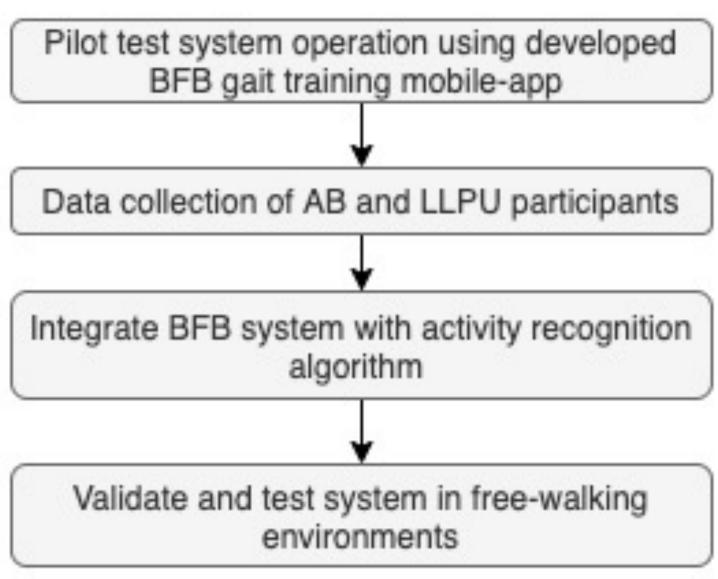


#### Institute of Biomedical Engineering UNIVERSITY OF TORONTO

### **Preliminary Results**

Gait parameter calculation based on gait event detection TO/HS timing errors significantly small for real-time BFB application\*

| Timing<br>Error (ms) | AB               |                  |  |
|----------------------|------------------|------------------|--|
|                      | Right            | Left             |  |
| Heel-<br>Strike      | 0.008 ±<br>0.015 | 0.010 ±<br>0.014 |  |
| Toe-Off              | -0.004 ±<br>0.01 | 0.000 ±<br>0.015 |  |


| Timing<br>Error (ms) | LLPU              |                  |  |
|----------------------|-------------------|------------------|--|
|                      | Prosthetic        | Intact           |  |
| Heel-Strike          | 0.015 ±<br>0.011  | 0.011 ±<br>0.010 |  |
| Toe-Off              | -0.005 ±<br>0.008 | 0.007 ±<br>0.41  |  |

### **Significance & Impact**

- Provides opportunity for gait training systems to move beyond the clinic, for youth and children with disabilities
- Biofeedback can help reinforce good gait habits
- Cost-effective and time-efficient solution
- Increased mobility  $\rightarrow$  increased quality of life



### **Next Steps**



#### Acknowledgements

Kimel Family Graduate Student Scholarships in Pediatric Rehabilitation Ontario Graduate Scholarship

#### References

[1] A. Michelini and J. Andrysek, "Evaluating the Effectiveness of Rhythmic Vibrotactile and Auditory Stimulation for a Biofeedback Gait Training System for Individuals with Lower Limb Amputation," Canadian Prosthetics & Orthotics Journal, 2021