Development and preliminary evaluation of a versatile gait event detection algorithm using wearable inertial sensors

Diana Cancelliere^{1,2}, Aliaa Gouda^{1,3}, Gabriel Ng^{1,3} and Jan Andrysek^{1,3}

- 1. Holland Bloorview Research Institute 2. Integrated Biomedical Engineering & Health Sciences, McMaster University,
- 3. Institute of Biomedical Engineering, University of Toronto.

INTRODUCTION

- Children and adults with lower-limb impairments commonly experience atypical walking (gait) patterns as they re-learn how to walk, requiring technologies to detect and/or measure these gait abnormalities.
- Inertial sensors can provide wearable and cost-effective gait analysis, compared to expensive lab technology.
- Objectively determining gait patterns can help quantify an individual's rehab progress, provide biofeedback, or even improve control of their assistive device.
- Gait parameters (e.g. stride duration) are used to assess gait patterns, which can be calculated by identifying gait events (i.e. heel strike and toe-off).

Monitor the Stance-Phase Control Function of the Automatic

Stance-Phase Lock (ASPL) Mechanism," Thesis, 2016.

Previous Research:

- single locomotion mode (level ground walking or stair ascent/descent)
- able-bodied participants [1,2]

Our Focus:

- multiple mode types
- simulate impairments

PROJECT AIM

Develop a versatile gait event detection algorithm for those with lower-limb impairments that analyses wearable inertial sensor signals

PRELIMINARY SETUP

- A preliminary assessment of algorithm performance was performed on walking trial data.
- Angular velocity signals were collected from inertial sensors.
- Pressure sensors adhered under the foot were used for validation (a common practice).
- Two walking trial samples were collected for each data type and walking mode combination:

Walking Trial Data

- No alterations
- Wearing ankle weight to simulate gait deviation due to lowerlimb impairment [3]

Pressure sensors (FSRs)

1. Level ground walking (LGW)

Walking Trial Modes

- Stair ascent (SA)
- Stair descent (SD)

An inertial sensor system can provide an accessible solution to assess multi-mode walking patterns of individuals with lower-limb impairments.

METHODS

A Matlab algorithm uses the angular velocity signal to identify heel strike (HS) & toe-off (TO) events ([1,2] used for initial reference):

Algorithm conditions remained general in order to be applicable for multiple locomotion modes.

RESULTS

- Event detection timing was compared between the algorithm and the pressure sensor data.
- The accuracy of the algorithm's ability to recognize the occurrence of an event was 99%.

IMU Heel-Strikes

The timing errors (absolute mean differences as a percentage of the average gait cycle ± standard deviation) between the two sets of data were calculated:

		Level Ground Walking		Stair Ascent		Stair Descent	
		HS (%)	TO (%)	HS (%)	TO (%)	HS (%)	TO (%)
	Unimpaired	7.87 ± 4.13	4.71 ± 4.15	3.24 ± 2.76	4.84 ± 8.39	13.63 ± 3.39	14.56 ± 5.75
	Weighted ankle	3.57 ± 2.73	6.38 ± 2.53	2.49 ± 3.45	6.14 ± 1.31	11.50 ± 4.10	18.15 ± 8.07

CONCLUSION & RELEVANCE

- Although 99% of gait events were detected, future work should include refining the algorithm to improve timing error and performing a validation study of the algorithm compared to a gold-standard, especially on participants with lower-limb impairments.
- Assessment of gait patterns using a wearable system provides a wireless, multi-mode, and cost-effective solution to objectively monitor the gait rehabilitation process of children and youth with disabilities.

FSR Heel-Strikes

IMU Heel-Strikes

REFERENCES

- P. Formento, R. Acevedo, S. Ghoussayni, and D. Ewins, "Gait Event Detection during Stair Walking Using a Rate Gyroscope," *Sensors*, vol. 14, no. 3, pp. 5470–5485, 2014.
- P. Catalfamo, S. Ghoussayni, and D. Ewins, "Gait Event Detection on Level Ground and Incline Walking
- Using a Rate Gyroscope," *Sensors*, vol. 10, no. 6, pp. 5683–5702, 2010.

 J. D. Smith and P. E. Martin, "Walking patterns change rapidly following asymmetrical lower extremity loading," Hum. Mov. Sci., vol. 26, no. 3, pp. 412–425, Jun. 2007.